Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
J Food Sci ; 89(3): 1403-1413, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38282363

RESUMEN

A ß-1,3-1,4-glucanase gene (Auglu12A) from Aspergillus usamii was successfully expressed in Escherichia coli BL21(DE3). The recombinant enzyme, reAuglu12A was efficiently purified using the one-step nickel-nitrilotriacetic acid affinity chromatography. The specific activity of reAuglu12A was 694.8 U/mg, with an optimal temperature of 55°C and pH of 5.0. The reAuglu12A exhibited stability at temperatures up to 60°C and within the pH range of 4.0-5.5. The reAuglu12A hydrolytic activity was increased in the presence of metal ions, especially K+ and Na+ , whereas it exhibited a Km and Vmax of 8.35 mg/mL and 1254.02 µmol/min/mg, respectively, toward barley ß-glucan at pH 5.0 and 55°C. The addition of reAuglu12A significantly increased the specific volume (p < 0.05) and reduced crumb firmness and chewiness (p < 0.05) of wheat-barley sourdough bread during a 7-day storage period compared to the control. Overall, the quality of wheat-barley sourdough bread was improved after incorporation of reAuglu12A (especially at 3000 U/300 g). These changes were attributed to the synergistic effect of acidification by sourdough and its metabolites which provided a conducive environment for the optimal action of reAuglu12A in the degradation of ß-glucans of barley flour in sourdough. This stabilized the dough structure, thereby enhancing the quality, texture, and shelf life of the bread. These findings suggest that reAuglu12A holds promise as a candidate for ß-glucanase application in the baking industry.


Asunto(s)
Aspergillus , Pan , Escherichia coli , Pan/análisis , Escherichia coli/genética , Fenómenos Químicos
2.
Foods ; 12(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37835228

RESUMEN

To reduce the inhibition sensitivity of a thermoresistant xylanase AusM to xylanase inhibitor protein (XIP)-type in wheat flour, the site-directed mutagenesis was conducted based on the computer-aided redesign. First, fourteen single-site variants and one three-amino acid replacement variant in the thumb region of an AusM-encoding gene (AusM) were constructed and expressed in E. coli BL21(DE3), respectively, as predicted theoretically. At a molar ratio of 100:1 between SyXIP-I/xylanase, the majority of mutants were nearly completely inactivated by the inhibitor SyXIP-I, whereas AusMN127A retained 62.7% of its initial activity and AusMPKK retained 100% of its initial activity. The optimal temperature of the best mutant AusMPKK was 60 °C, as opposed to 60-65 °C for AusM, while it exhibited improved thermostability, retaining approximately 60% of its residual activity after heating at 80 °C for 60 min. Furthermore, AusMPKK at a dosage of 1000 U/kg was more effective than AusM at 4000 U/kg in increasing specific bread loaf volume and reducing hardness during bread production and storage. Directed evolution of AusM significantly reduces inhibition sensitivity, and the mutant enzyme AusMPKK is conducive to improving bread quality and extending its shelf life.

3.
Environ Sci Technol ; 57(26): 9664-9674, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37341475

RESUMEN

Bipolar membranes (BPMs), a special class of ion exchange membranes with the unique ability to electrochemically induce either water dissociation or recombination, are of growing interest for environmental applications including eliminating chemical dosage for pH adjustment, resource recovery, valorization of brines, and carbon capture. However, ion transport within BPMs, and particularly at its junction, has remained poorly understood. This work aims to theoretically and experimentally investigate ion transport in BPMs under both reverse and forward bias operation modes, taking into account the production or recombination of H+ and OH-, as well as the transport of salt ions (e.g., Na+, Cl-) inside the membrane. We adopt a model based on the Nernst-Planck theory, that requires only three input parameters─membrane thickness, its charge density, and pK of proton adsorption─to predict the concentration profiles of four ions (H+, OH-, Na+, and Cl-) inside the membrane and the resulting current-voltage curve. The model can predict most of the experimental results measured with a commercial BPM, including the observation of limiting and overlimiting currents, which emerge due to particular concentration profiles that develop inside the BPM. This work provides new insights into the physical phenomena in BPMs and helps identify optimal operating conditions for future environmental applications.


Asunto(s)
Cloruro de Sodio , Sodio , Iones , Agua
4.
Antioxidants (Basel) ; 12(4)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37107210

RESUMEN

Natural products have been used extensively around the world for many years as therapeutic, prophylactic, and health-promotive agents. Ribes himalense Royle ex Decne, a plant used in traditional Tibetan medicine, has been demonstrated to have significant antioxidant and anti-inflammatory properties. However, the material basis of its medicinal effects has not been sufficiently explored. In this study, we established an integrated strategy by online HPLC-1,1-diphenyl-2-picrylhydrazyl, medium-pressure liquid chromatography, and HPLC to achieve online detection and separation of antioxidants in Ribes himalense extracts. Finally, four antioxidants with quercetin as the parent nucleus were obtained, namely, Quercetin-3-O-ß-D-glucopyranoside-7-O-α-L-rhamnopyranoside, Quercetin-3-O-ß-D-xylopyranosyl(1-2)-ß-D-glucopyranoside, Quercetin-3-O-ß-D-glucopyranoside, and Quercetin-3-O-ß-D-galactoside. Until now, the four antioxidants in Ribes himalense have not been reported in other literatures. Meanwhile, the free-radical-scavenging ability of them was evaluated by DPPH assay, and potential antioxidant target proteins were explored using molecular docking. In conclusion, this research provides insights into the active compounds in Ribes himalense which will facilitate the advancement of deeper studies on it. Moreover, such an integrated chromatographic strategy could be a strong driver for more efficient and scientific use of other natural products in the food and pharmaceutical industries.

5.
J Clin Med ; 12(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36769382

RESUMEN

Radiation-induced lung injury (RILI), a potentially fatal and dose-limiting complication of radiotherapy for thoracic tumors, is divided into early reversible pneumonitis and irreversible advanced-stage fibrosis. Early detection and intervention contribute to improving clinical outcomes of patients. However, there is still a lack of reliable biomarkers for early prediction and clinical diagnosis of RILI. Given the central role of inflammation in the initiation and progression of RILI, we explored specific inflammation-related biomarkers during the development of RILI in this study. Two expression profiles from the Gene Expression Omnibus (GEO) database were downloaded, in which 75 differentially expressed genes (DEGs) were screened out. Combining Gene Oncology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and protein-protein interaction (PPI) network analysis, we identified four inflammation-related hub genes in the progression of RILI-MMP9, IL-1ß, CCR1 and S100A9. The expression levels of the hub genes were verified in RILI mouse models, with S100A9 showing the highest level of overexpression. The level of S100A9 in bronchoalveolar lavage fluid (BALF) and the expression of S100A9 in lung tissues were positively correlated with the degree of inflammation in RILI. The results above indicate that S100A9 is a potential biomarker for the early prediction and diagnosis of the development of RILI.

6.
Biomolecules ; 14(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38254641

RESUMEN

BACKGROUND: Exosomes are essential for hepatocellular carcinoma (HCC) progression and have garnered significant interest as novel targets for diagnostic, prognostic, and therapeutic approaches. This study aims to identify potential exosome-related biomarkers for the development of useful strategies for HCC diagnosis and therapy. METHODS: Three datasets obtained from the Gene Expression Omnibus (GEO) were utilized to identify differentially expressed genes (DEGs) in HCC. Through Gene Ontology (GO) analysis and protein-protein interaction (PPI) network, overall survival (OS) analysis, Cox analyses, and diethylnitrosamine (DEN)-induced HCC mouse model detection, exosome-related hub gene was screened out, followed by a prognostic value assessment and immune-correlates analysis based on the Cancer Genome Atlas (TCGA) dataset. The hub gene-containing exosomes derived from Hepa1-6 cells were isolated and characterized using differential ultracentrifugation, transmission electron microscopy scanning, and Western blot. Ultrasound-guided intrahepatic injection, cell co-culture, CCK-8, and flow cytometry were performed to investigate the effects of the hub gene on macrophage infiltration and polarization in HCC. RESULTS: A total of 83 DEGs enriched in the extracellular exosome term, among which, FTCD, HRA, and C8B showed the strongest association with the progression of HCC. FTCD was independently associated with a protective effect in HCC and selected as the hub gene. The presence of FTCD in exosomes was confirmed. FTCD-stimulated macrophages were polarized towards the M1 type and suppressed HCC cells proliferation. CONCLUSIONS: FTCD is a potential exosome-related biomarker for HCC diagnosis, prognosis, and treatment. The crosstalk between FTCD-containing exosomes and macrophages in HCC progression deserves further investigation.


Asunto(s)
Carcinoma Hepatocelular , Exosomas , Glutamato Formimidoiltransferasa , Neoplasias Hepáticas , Animales , Ratones , Western Blotting , Carcinoma Hepatocelular/genética , Exosomas/genética , Neoplasias Hepáticas/genética , Ratones Endogámicos , Glutamato Formimidoiltransferasa/metabolismo
7.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38203398

RESUMEN

Antioxidants from natural sources have long been of interest to researchers. In this paper, taking the traditional Tibetan medicine Ribes himalense as an example, an integrated approach was used to identify and isolate its chemical composition with free-radical-scavenging properties from its ethanol extract. First, the ethanol extract of Ribes himalense was pretreated using polyamide medium-pressure liquid chromatography (polyamide-MPLC), and the target fraction (Fr4) was obtained. Then, a combined HPLC mode was utilized to purify antioxidants in Fr4 under the guidance of an online HPLC-1,1-diphenyl-2-picrylhydrazyl (HPLC-DPPH) activity screening system. Finally, three antioxidants (3-caffeoylquinic acid methyl ester, rutin, and myricetin-3'-α-L-rhamnopyranoside) were isolated, and this is the first report of their presence in R. himalense. Further molecular docking studies showed that the antioxidants exhibited good binding with HO-1, Nrf2, and iNOS. In conclusion, this comprehensive approach is capable of extracting high-purity antioxidants from trace fractions of Ribes himalense and holds promise for future applications in the exploration of the chemical compositions and bioactivity of natural products.


Asunto(s)
Antioxidantes , Ribes , Antioxidantes/farmacología , Simulación del Acoplamiento Molecular , Nylons , Cromatografía Liquida , Etanol , Extractos Vegetales/farmacología
8.
J Int Soc Sports Nutr ; 19(1): 664-676, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518491

RESUMEN

Background: Although previous studies have shown that aerobic and resistance exercise increase high-density lipoprotein cholesterol (HDL-C) levels, the optimal type of exercise has not been determined. Therefore, the purpose of this study was to investigate the association of jogging (a type of aerobic exercise) and weight training (a type of resistance exercise) with HDL-C levels in Taiwanese adults. Methods: The data used in this cross-sectional study were obtained from the Taiwan Biobank (TWB), which is a national health resource that contains the genetic information of Taiwanese volunteers aged 30-70 years. A total of 75,635 subjects (47,881 women and 27,754 men) were included in this study. The subjects were divided into four groups: jogging (n = 2,278), weight training (n = 522), mixed exercise (n = 519), and no exercise (n = 72,316). The TWB data were collected through questionnaires (e.g. basic characteristics, lifestyle factors, and disease history), biochemical tests, and anthropometric measurements. Results: Compared with no exercise, jogging, weight training, and mixed exercise were all associated with higher HDL-C levels (ß = 2.5470, 2.6249, and 3.2117, respectively). As seen, the ß value was highest for the mixed exercise group, followed by weight training and then jogging (p for trend <0.0001). Conclusions: In the current study, jogging and weight training were individually associated with higher levels of HDL-C. Engaging in both activities was associated with much higher levels of HDL-C. Our findings suggest that regular jogging and weight training might play an important role in increasing HDL-C levels.


Asunto(s)
Ejercicio Físico , Trote , Masculino , Adulto , Humanos , Femenino , Estudios Transversales , HDL-Colesterol , Levantamiento de Peso
9.
Front Public Health ; 10: 880572, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36062134

RESUMEN

Background: The highest proportion of smoking behavior occurs in male adults in Taiwan. However, to our knowledge, no study has investigated the relationship between smoking behavior and health-related physical fitness according to education level, health status, betel nut-chewing status and obesity in male adults aged 18 years or older in Taiwan. Aims: This study aimed to determine the associations between cigarette smoking and health-related physical fitness performance in male Taiwanese adults. Methods: This was a cross-sectional study conducted on 27,908 male adults (aged 23-64 years) who participated in Taiwan's National Physical Fitness Survey 2014-2015. Data from a standardized structured questionnaire, anthropometric variables, and health-related physical fitness measurements were analyzed. Individuals were categorized as never smoking cigarettes, former smoker, and current smoker. Multiple linear regression analysis was performed to evaluate the association between cigarette smoking and health-related physical fitness performance. Results: Never smoking group exhibited a lower (p < 0.05) proportion of abdominal obesity, higher (p < 0.05) proportion of perceived good health status, and greater (p < 0.05) performance in 1-min sit-up and sit-and-reach tests when compared with current smoking and former smoking group. Former smoking group had the highest (p < 0.05) performance in 3-min step test among all groups. Current smoker was significantly negatively (p < 0.05) associated with 3-min step, 1-min sit-up and sit-and-reach tests. Notably, former smoker was significantly positively (p < 0.05) associated with 3-min step and 1-min sit-up tests, but still negatively (p < 0.05) associated with sit-and-reach performance. Conclusion: Current smoker was associated with an increased the risk of abdominal obesity, reduced the perceived health status and health-related physical fitness performance. Quitting smoking had beneficial effect on the perceived good health status, cardiorespiratory and muscular fitness in male Taiwanese adults, but not on flexibility performance. Further research on the ameliorate mechanism underlying this phenomenon is warranted.


Asunto(s)
Fumar Cigarrillos , Adulto , Fumar Cigarrillos/epidemiología , Estudios Transversales , Ejercicio Físico , Humanos , Masculino , Obesidad , Obesidad Abdominal , Aptitud Física , Nicotiana
10.
J Clin Med ; 11(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36079086

RESUMEN

(1) Background: The Alberta Stroke Program Early CT Score (ASPECTS) is a standardized scoring tool used to evaluate the severity of acute ischemic stroke (AIS) on non-contrast CT (NCCT). Our aim in this study was to automate ASPECTS. (2) Methods: We utilized a total of 258 patient images with suspected AIS symptoms. Expert ASPECTS readings on NCCT were used as ground truths. A deep learning-based automatic detection (DLAD) algorithm was developed for automated ASPECTS scoring based on 168 training patient images using a convolutional neural network (CNN) architecture. An additional 90 testing patient images were used to evaluate the performance of the DLAD algorithm, which was then compared with ASPECTS readings on NCCT as performed by physicians. (3) Results: The sensitivity, specificity, and accuracy of DLAD for the prediction of ASPECTS were 65%, 82%, and 80%, respectively. These results demonstrate that the DLAD algorithm was not inferior to radiologist-read ASPECTS on NCCT. With the assistance of DLAD, the individual sensitivity of the ER physician, neurologist, and radiologist improved. (4) Conclusion: The proposed DLAD algorithm exhibits a reasonable ability for ASPECTS scoring on NCCT images in patients presenting with AIS symptoms. The DLAD algorithm could be a valuable tool to improve and accelerate the decision-making process of front-line physicians.

11.
Front Bioeng Biotechnol ; 10: 846489, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35252153

RESUMEN

As a valuable versatile building block, L-phenyllactic acid (L-PLA) has numerous applications in the fields of agriculture, pharmaceuticals, and biodegradable plastics. However, both normally chemically synthesized and naturally occurring PLA are racemic, and the production titer of L-PLA is not satisfactory. To improve L-PLA production and reduce the high cost of NADH, an in vitro coenzyme regeneration system of NADH was achieved using the glucose dehydrogenase variant LsGDHD255C and introduced into the L-PLA production process. Here an NADH-dependent L-lactate dehydrogenase-encoding variant gene (L-Lcldh1Q88A/I229A) was expressed in Pichia pastoris GS115. The specific activity of L-LcLDH1Q88A/I229A (Pp) was as high as 447.6 U/mg at the optimum temperature and pH of 40°C and 5.0, which was 38.26-fold higher than that of wild-type L-LcLDH1 (Pp). The catalytic efficiency (k cat/K m) of L-LcLDH1Q88A/I229A (Pp) was 94.3 mM-1 s-1, which was 67.4- and 25.5-fold higher than that of L-LcLDH1(Pp) and L-LcLDH1Q88A/I229A (Ec) expressed in Escherichia coli, respectively. Optimum reactions of L-PLA production by dual-enzyme catalysis were at 40°C and pH 5.0 with 10.0 U/ml L-LcLDH1Q88A/I229A (Pp) and 4.0 U/ml LsGDHD255C. Using 0.1 mM NAD+, 400 mM (65.66 g/L) phenylpyruvic acid was completely hydrolyzed by fed-batch process within 6 h, affording L-PLA with 90.0% yield and over 99.9% ee p. This work would be a promising technical strategy for the preparation of L-PLA at an industrial scale.

12.
Front Bioeng Biotechnol ; 10: 824300, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295651

RESUMEN

(R)-p-chlorophenyl-1,2-ethanediol (pCPED) is an important intermediate for the synthesis of (R)-eliprodil that is widely applied in the treatment of ischemic stroke. To prepare (R)-pCPED with high enantiomeric excess (ee p) and yield via the enantioconvergent hydrolysis of racemic styrene oxide (rac-pCSO) at high concentration, the bi-enzymatic catalysis was designed and investigated by a pair of epoxide hydrolases, a mutant (PvEH1Z4X4-59) of Phaseolus vulgaris EH1 and a mutant (RpEHF361V) of Rhodotorula paludigena RpEH. Firstly, the maximum allowable concentration of rac-pCSO was confirmed. Subsequently, the addition mode and the weight ratio of two Escherichia coli cells were optimized. Finally, under the optimized reaction conditions-the cell weight ratio 20:1 of E. coli/pveh1z4x4-59 to E. coli/rpeh F361V, a simultaneous addition mode, and reaction temperature at 25°C-300 mM rac-pCSO in the 100 ml 4% (v/v) Tween-20/phosphate buffer system (100 mM, pH 7.0) was completely hydrolyzed within 5 h, affording (R)-pCPED with 87.8% ee p, 93.4% yield, and 8.63 g/L/h space-time yield (STY). This work would be an efficient technical strategy for the preparation of chiral vicinal diols at industrial scale.

13.
Org Lett ; 24(9): 1757-1761, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35229602

RESUMEN

Structure-guided microtuning of an Aspergillus usamii epoxide hydrolase was executed. One mutant, A214C/A250I, displayed a 12.6-fold enhanced enantiomeric ratio (E = 202) toward rac-styrene oxide, achieving its nearly perfect kinetic resolution at 0.8 M in pure water or 1.6 M in n-hexanol/water. Several other beneficial mutants also displayed significantly improved E values, offering promising biocatalysts to access 19 structurally diverse chiral monosubstituted epoxides (97.1 - ≥ 99% ees) and vicinal diols (56.2-98.0% eep) with high yields.


Asunto(s)
Epóxido Hidrolasas , Compuestos Epoxi , Epóxido Hidrolasas/metabolismo , Cinética , Estereoisomerismo , Agua
14.
Enzyme Microb Technol ; 146: 109778, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33812566

RESUMEN

Microtuning the substrate-binding pocket (SBP) of EHs has emerged as an effective approach to manipulate their enantio- or regio-selectivities and activities towards target substrates. Here, the enantioselectivity (enantiomeric ratio, E) of AuEH2 towards a racemic (rac-) ortho-trifluoromethyl styrene oxide (o-TFMSO) was improved via microtuning its SBP. Based on the analysis on the crystal structure of AuEH2, its specific residues I192, Y216, R322 and L344 lining the SBP in close to the catalytic triad were identified for site-saturation mutagenesis. After screening, five single-site mutants were selected with E values elevated from 8 to 12-25 towards rac-o-TFMSO. To further improve E, four double-site mutants were constructed by combinatorial mutagenesis of AuEH2R322V separately with AuEH2I192V, AuEH2Y216F, AuEH2L344A and AuEH2L344C. Among all the mutants, AuEH2R322V/L344C possessed the largest E of 83 with activity of 67 U/g wet cell. The kinetic resolution of 200 mM rac-o-TFMSO was conducted at 0 °C for 5.5 h using 80 mg/mL wet cells of E. coli/Aueh2R322V/L344C, a transformant expressing AuEH2R322V/L344C, retaining (S)-o-TFMSO with 98.4 % ees and 49.3 % yields. Furthermore, the molecular docking simulation analysis indicated that AuEH2R322V/L344C more enantiopreferentially attacks the terminal carbon (Cß) in the oxirane ring of (R)-o-TFMSO than AuEH2.


Asunto(s)
Epóxido Hidrolasas , Escherichia coli , Aspergillus , Epóxido Hidrolasas/genética , Compuestos Epoxi , Escherichia coli/genética , Simulación del Acoplamiento Molecular , Estereoisomerismo
15.
Chemosphere ; 274: 129762, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33548648

RESUMEN

The main objective of the study is to explore the removal characteristics of Cu2+ and Zn2+ ions in activated carbon-based capacitive deionization (CDI). In this work, CDI experiments were performed to remove divalent ions (e.g., Cu2+, Zn2+, and Ca2+) from single- and multicomponent aqueous solutions. As evidenced, divalent heavy metals could be successfully removed by charging the CDI cell at 1.2 V. Notably, the preferential removal of Cu2+ ions over Zn2+ and Ca2+ ions was observed in the charging step. The removal capacities for Cu2+, Zn2+, and Ca2+ ions in a competitive environment were 29.6, 19.6, and 13.8 µmol/g, respectively. In contrast, the regeneration efficiencies for the removal of Cu2+ and Zn2+ were much lower than that of Ca2+, suggesting the occurrence of irreversible Faradaic reactions on the cathode. X-ray photoelectron spectroscopy analysis demonstrated that Cu2+ ions were reduced to Cu(I) and Zn2+ ions were transformed to ZnO/Zn(OH)2 on the cathode. Therefore, there were two major mechanisms for the removal of divalent heavy metal ions: capacitive electrosorption and cathodic electrodeposition. Specifically, the reduction potential played a crucial role in determining the removal characteristics. When regarding divalent cations with similar hydrated sizes, the divalent cation with a higher reduction potential tended to be separated by cathodic electrodeposition rather than double-layer charging, indicating the high removal selectivity of activated carbon-based CDI. This paper constitutes a significant contribution to promoting the application of CDI for contaminant sequestration.


Asunto(s)
Carbón Orgánico , Purificación del Agua , Cationes Bivalentes , Electrodos , Oxidación-Reducción
16.
3 Biotech ; 11(2): 69, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33489686

RESUMEN

To enhance the specific activity and catalytic efficiency (k cat/K m) of an NADH-dependent LpPPR, its directed modification was performed based on the computer-aided design using molecular docking simulation and multiple sequence alignment. Firstly, five single-site variants of an LpPPR-encoding gene (lpppr) were amplified and expressed in E. coli BL21 (DE3). The asymmetric reduction of 20 mM phenylpyruvic acid (PPA) was carried out using 50 mg/mL E. coli/lpppr R53Q or /lpppr A79V whole wet cells at 37 °C for 20 min, giving d-phenyllactic acid (PLA) with 41.1 or 44.3% yield, being 1.17- or 1.26-fold that by E. coli/lpppr. Secondly, double-site variants were obtained by saturation mutagenesis of Ala79 in LpPPRR53Q. Among all tested E. coli transformants, E. coli/lpppr R53Q/A79V exhibited the highest d-PLA yield of 85.3%. The specific activity and k cat/K m of the purified LpPPRR53Q/A79V increased to 67.5 U/mg and 169.8 mM-1 s-1, which were 3.0- and 13.2-fold those of LpPPR, respectively. Finally, the catalytic mechanism analysis of LpPPRR53Q/A79V by molecular docking simulation indicated that the replacement of Arg53 in LpPPR with Gln expanded its substrate-binding pocket, while that Ala79 with Val formed an additional π-sigma interaction with phenyl group of PPA. SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s13205-020-02633-3) contains supplementary material, which is available to authorized users.

17.
Asian Biomed (Res Rev News) ; 15(2): 91-99, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37551401

RESUMEN

Background: Joint replacement surgery provides articular cartilage samples for chondrocyte isolation. To our knowledge, the effect of the collagenase type on releasing of chondrocytes from the extracellular matrix of cartilage is not reported. Objectives: To determine whether cartilage digested with collagenase IA yielded more chondrocytes than that digested with collagenase II and determine whether chondrocytes isolated with collagenase IA could be cultured in vitro. Methods: Cartilage slices collected from 18 elderly patients who received joint replacement surgery (16 hips, 2 knees) were digested sequentially with 0.4% pronase E and 0.02% collagenase IA, or with 0.15% collagenase II alone, or sequentially with 0.4% pronase E and 0.02% collagenase II. We compared cell yield from each method. Cell viability by the most effective method was calculated and plotted. The morphology of cultured monolayer chondrocytes was recorded with a light microscope. Results: Sequential digestion with pronase E and collagenase IA yielded 2566 ± 873 chondrocytes per mg wet cartilage, which was more effective than the other isolation methods (P = 0.018). The average chondrocyte viability could reach 84% ± 8% (n = 11). Light microscopic images showed typical chondrocyte morphology in monolayer cultures. Conclusion: Sequential digestion of human articular cartilage with pronase E and collagenase IA was more effective than collagenase II alone or collagenase II combined with pronase E for releasing chondrocytes from extracellular matrix of cartilage. Chondrocytes isolated with this method could be maintained in monolayer cultures for at least 2 passages with unaltered morphology.

18.
Int J Biol Macromol ; 169: 1-7, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33316339

RESUMEN

Only a few known epoxide hydrolases (EHs) displayed activity towards o-nitrostyrene oxide (4a), presumably owing to the large steric hindrance caused by o-nitro substituent. Therefore, excavating EHs with high activity and enantio- and/or regio-selectivity towards racemic (rac-) 4a is essential but challenging. Here, AuEH2 from Aspergillus usamii was expressed in E. coli BL21(DE3). E. coli/Aueh2, an E. coli transformant expressing AuEH2, possessed EH activities of 16.2-184 U/g wet cell towards rac-styrene oxide (1a) and its derivatives (2a-13a), and the largest enantiomeric ratio of 96 towards rac-4a. The regioselectivity coefficients, ßR and ßS, of AuEH2 were determined to be 99.2% and 98.9%, suggesting that it regiopreferentially attacks the Cß in the oxirane rings of (R)- and (S)-4a. Then, the nearly perfect kinetic resolution of 20 mM rac-4a in pure water was carried out using 20 mg/mL wet cells of E. coli/Aueh2 at 25 °C for 50 min, retaining (S)-4a with over 99% ees and 48.9% yields, while producing (R)-o-nitrophenyl-1,2-ethanediol (4b) with 95.3% eep and 49.8% yieldp. To elucidate the molecular mechanism of AuEH2 with high enantiopreference for (R)-4a, its crystal structure was solved by X-ray diffraction and the molecular docking of AuEH2 with (R)- or (S)-4a was simulated.


Asunto(s)
Epóxido Hidrolasas/química , Epóxido Hidrolasas/aislamiento & purificación , Compuestos Epoxi/química , Aspergillus/enzimología , Aspergillus/metabolismo , Escherichia coli/metabolismo , Hidrólisis , Cinética , Simulación del Acoplamiento Molecular , Óxidos , Estereoisomerismo
19.
Int J Biol Macromol ; 164: 2795-2803, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32763395

RESUMEN

A novel epoxide hydrolase from Glycine max, designated GmEH3, was excavated based on the computer-aided analysis. Then, gmeh3, a GmEH3-encoding gene, was cloned and successfully expressed in E. coli Rosetta(DE3). Among the ten investigated rac-epoxides, GmEH3 possessed the highest and best complementary regioselectivities (regioselectivity coefficients, αS = 93.7% and ßR = 97.2%) in the asymmetric hydrolysis of rac-m-chlorostyrene oxide (5a), and the highest enantioselectivity (enantiomeric ratio, E = 55.6) towards rac-phenyl glycidyl ether (7a). The catalytic efficiency (kcatS/KmS = 2.50 mM-1 s-1) of purified GmEH3 for (S)-5a was slightly higher than that (kcatR/KmR = 1.52 mM-1 s-1) for (R)-5a, whereas the kcat/Km (5.16 mM-1 s-1) for (S)-7a was much higher than that (0.09 mM-1 s-1) for (R)-7a. Using 200 mg/mL wet cells of E. coli/gmeh3 as the biocatalyst, the scale-up enantioconvergent hydrolysis of 150 mM rac-5a at 25 °C for 1.5 h afforded (R)-5b with 90.2% eep and 95.4% yieldp, while the kinetic resolution of 500 mM rac-7a for 2.5 h retained (R)-7a with over 99% ees and 43.2% yields. Furthermore, the sources of high regiocomplementarity of GmEH3 for (S)- and (R)-5a as well as high enantioselectivity towards rac-7a were analyzed via molecular docking (MD) simulation.


Asunto(s)
Biología Computacional/métodos , Epóxido Hidrolasas/genética , Epóxido Hidrolasas/metabolismo , Glycine max/enzimología , Secuencia de Aminoácidos , Catálisis , Clonación Molecular , Epóxido Hidrolasas/química , Compuestos Epoxi/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Hidrólisis , Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/metabolismo , Glycine max/genética
20.
Sheng Wu Gong Cheng Xue Bao ; 36(5): 959-968, 2020 May 25.
Artículo en Chino | MEDLINE | ID: mdl-32567279

RESUMEN

To improve the productivity of L-phenyllactic acid (L-PLA), L-LcLDH1(Q88A/I229A), a Lactobacillus casei L-lactate dehydrogenase mutant, was successfully expressed in Pichia pastoris GS115. An NADH regeneration system in vitro was then constructed by coupling the recombinant (re) LcLDH1(Q88A/I229A) with a glucose 1-dehydrogenase for the asymmetric reduction of phenylpyruvate (PPA) to L-PLA. SDS-PAGE analysis showed that the apparent molecular weight of reLcLDH1(Q88A/I229A) was 36.8 kDa. And its specific activity was 270.5 U/mg, 42.9-fold higher than that of LcLDH1 (6.3 U/mg). The asymmetric reduction of PPA (100 mmol/L) was performed at 40 °C and pH 5.0 in an optimal biocatalytic system, containing 10 U/mL reLcLDH1(Q88A/I229A), 1 U/mL SyGDH, 2 mmol/L NAD⁺ and 120 mmol/L D-glucose, producing L-PLA with 99.8% yield and over 99% enantiomeric excess (ee). In addition, the space-time yield (STY) and average turnover frequency (aTOF) were as high as 9.5 g/(L·h) and 257.0 g/(g·h), respectively. The high productivity of reLcLDH1(Q88A/I229A) in the asymmetric reduction of PPA makes it a promising biocatalyst in the preparation of L-PLA.


Asunto(s)
L-Lactato Deshidrogenasa , Lacticaseibacillus casei , Ácidos Fenilpirúvicos , Pichia , L-Lactato Deshidrogenasa/genética , Lacticaseibacillus casei/enzimología , Lacticaseibacillus casei/genética , Ácidos Fenilpirúvicos/metabolismo , Pichia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...